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Abstract—In this project we aim to conduct a
comprehensive comparative analysis of deepfake video
detection models, leveraging the open-source Deepstar
toolkit. This toolkit provides training data and two example
neural networks for deepfake detection. Our goal is to train
the two networks and compare their effectiveness, and then
use our insights to design our own model and compare it to
the original two. We will speculate about the impact a given
model’s structure has on the given model’s performance. Our
aim is to improve our model to be as accurate as possible,
and ideally at least as accurate as the two examples.

I. INTRODUCTION

A deepfake is an image or video of a person in which
their likeness has been digitally altered so that they appear
to be someone else. Deepfakes can be used as malicious
or destructive tools by bad actors, as they are often
indistinguishable from real pictures and videos to the
human eye. Deepfakes have already been used to commit
crimes of misinformation and identity fraud, and they are
only getting more dangerous as the technology improves.
As deepfakes become harder and harder to discern from
reality, it is critical that the models which we use to detect
them evolve as well.

Deepstar is an open-source toolkit created by ZeroFox
for the specific purpose of helping researchers to create
better deepfake detection models. It offers a dataset of
both real and deepfaked videos (packaged as a set of
YouTube URLs), and it also provides two example detec-
tion models for researchers to use as a baseline. The two
example models are called Mouthnet and Mesonet.

Our goal for this project is to train and test Mouthnet
and Mesonet on the video dataset provided by Deepstar,
and then to use our observations to build a new model
which performs even better.

II. DEEPSTAR MODELS

Both Mouthnet and Mesonet are convolutional neu-
ral networks (CNNs) which classify individual frames of
a video independently. A CNN is the most prevalent
approach to image classification, as the convolutional
layers are very effective at transforming image data into a
rich feature representation which a standard feed-forward
neural network can more easily classify.

CNN’s extract information from images by passing a
small filter over the image, and using the filter to enhance
features of the image which match the filter. This is

known as convolution, and is carried out by a convo-
lutional layer. This process leads to a higher contrast
image, where any relevant features (usually edges) are
even more pronounced and sharp. Because the image’s
features are more pronounced, the image can be scaled
down without losing these important features. This is
usually achieved with a max pooling layer, which takes
the maximum value of a group of pixels in the original
image, and makes that the corresponding pixel value in
the new lower resolution image. This process of passing
an image through convolution layers and max pooling
layers is usually repeated multiple times, until eventually
the image is a much more compact feature representation
of its original self. Then the image can be flattened into
a vector and passed through densely connected layers to
create a classification.

A. Mesonet
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Fig. 1. Mesonet Architecture

The first of the two provided Deepstar models is called
Mesonet [1]. Mesonet is a CNN with four repeating sets
of convolutional layers, normalization layers, and max
pooling layers which reduce an image into a rich feature



representation. The image is then flattened into a vector,
and passed through a dropout layer (which randomly
masks parts of the vector passed to it). Then the vector
is passed through a dense layer (a dense layer is the
backbone of most neural networks, it is a layer that takes
in data, weighs it, adds a bias, applies an activation
function, and produces an output that’s passed to the
next layer for further processing), then another dropout
layer, and finally a single sigmoid function. This sigmoid
function ensures that the final output of the model falls
in the range of 0 and 1, which allows us to map the model
output to our binary classification task (if a video is fake
the model is expected to output 0 and if the video is real
the model is expected to output 1).

B. Mouthnet
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Fig. 2. Mouthnet Architecture

Mouthnet, the other model provided by the Deepstar
toolkit, is also a CNN like Mesonet, but with a few
key differences. The most stark difference is that the
convolutional tail of Mouthnet is actually a pre-existing
convolutional feature extraction architecture called Incep-
tion ResNet V2. Inception ResNet V2 differs from the set
of convolutional layers used by Mesonet mainly in that
it features residual connections, which allow for inputs to
"pass through" certain layers and recombine with their
own feature representations in later layers [2]. The rest
of Mouthnet is almost the same as Mesonet, with the
feature representation produced by Inception ResNet V2
being flattened into a vector, passed through a dense layer,
passed through a dropout layer, and then fed to a sigmoid
function for the final binary classification output.

Mouthnet, having roughly 61,000,000 tunable parame-
ters, is considerably larger than Mesonet, which only has
around 28,000. About 54,000,000 of Mouthnet’s parameters
are just from the Inception ResNet V2 model. This differ-
ence in scale between Mesonet and Mouthnet makes a
fair comparison of their utility difficult.

C. Initial Performance of Deepstar Models
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Fig. 3. Initial Mesonet Accuracy
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Fig. 4. Initial Mouthnet Accuracy

As seen in Fig. 3 and Fig. 4, Mesonet exhibited a
much more consistent initial performance than Mouthnet.
The Mesonet accuracy on both the training and test set
steadily improved over time, with a modest best test
accuracy of 84.22%. Mouthnet on the other hand did
not improve at all, and the suspicious constant 50% test
accuracy leads us to believe that the model was most likely
classifying every sample in the test set as a single class.
Given that Mouthnet has a different optimizer (Stochastic
Gradient Descent) than the one used by Mesonet (Adam),
and the fact that Mouthnet is orders of magnitude larger
(in terms of learnable parameters), it is possible that
Mouthnet simply needs way more training time than it



was given, and could eventually start producing accurate
classifications. Mouthnet took 1210 seconds per epoch
on average, whereas Mesonet took only 568 seconds per
epoch on average. Mesonet is the clear winner.

ITII. POTENTIALISSUES

Following our initial training and testing of the Deepstar
models, we identified two main issues which we sought
to remedy to improve our own model’s accuracy.

A. Frame Sampling Issue
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Fig. 5. Random Clip Sampling

One problem we identified was related to how the
data was being sampled from the videos. Because the
Deepstar models are essentially image classifiers, they
have to be fed individual frames from the videos. The
current method of collecting frames from a video involved
randomly selecting a clip from the video with a predefined
length, and then using the true label of the video ("fake"
or "real") as the true label for all the frames in the clip.

The main issue with this is that the deepfaked segment
of a video is very rarely the length of the whole video. So
when the frame sampler randomly selects a clip from a
video, there is a chance that some or even all of the frames
sampled do not contain any deepfaking, even when the
video is labeled as deepfaked. This leads to the possibility
of the models being trained largely on mislabeled frames,
which will have a problematic effect on its performance.

B. Temporal Context
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Fig. 6. Temporal Context

The problem with poor frame sampling is further
compounded by the second and more obvious issue we
identified: the Deepstar models have no temporal context.
Because both Deepstar models are image classifiers, each
frame of a video must be classified independently of
all other frames, with the model being unable to use
the information of the preceding or following frame to

help make its decision. Since we are attempting a video
classification task, this is a big problem. Using our current
frame sampler, it is possible that some of the frames in a
video will be deepfaked and some will not, but because
the models are classifying each frame independently, it
will not be able to identify that the non-deepfaked frames
belong to a deepfaked video, even if it correctly identified
the actually deepfaked frames in the same video.

IV. PROPOSED SOLUTIONS
A. Multi-Clip Sampler
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Fig. 7. Multi-Clip Sampling

To remedy the problems caused by random frame
sampling, we created a new data generator. This generator
splits the video into multiple, evenly-spaced clips through-
out the length of the video. This way, no matter where
the deepfaked clip is, there is a better chance that at least
some deepfaked frames will be included.

B. RNN

Our first attempt at solving the lack of temporal context
was to augment Mesonet (the better performing Deepstar
model) with a new temporally aware architecture. This was
achieved by implementing a kind of architecture known
as an RNN.

An RNN, or Recurrent Neural Network, is a type of
neural network that excels at understanding and making
predictions about sequences of data. Unlike the layers of a
standard feed-forward network, the blocks of an RNN are
capable of sharing information laterally, which allows the
previous samples of a sequence to have an effect on the
output for the current sample. This gives us the temporal
context we need, as the decisions generated for previous
frames can be used to influence the decision made for the
current ones. Because an RNN can process sequences, we
can now feed it all the frames sampled from a single video
and generate a single classification for that video, which
is exactly aligned with our goal.

Our specific approach for turning Mesonet into a
temporally-informed model can be seen in Fig. 8. All the
sampled frames of a given video are fed into a time-
distributed, pretrained Mesonet model. This results in
a set of confidence values, where each value indicates
Mesonet’s confidence that the corresponding frame is real
and not deepfaked. This sequence of confidence values
is then passed to an LSTM, which is our model’s RNN
component.
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Fig. 8. RNN Architecture

An LSTM, or Long Short Term Memory, is a kind of
intelligent memory unit for a neural network. It can
remember, update, and forget previous information in the
sequence, both in long and short term. By using this
component to process our sequence of confidence values,
we can generate a feature representation of our video
which takes into account all of the frames in our video,
which gives us the temporal inference we were missing
before. This representation can then be processed simi-
larly to how we processed image feature representations
in Mesonet and Mouthnet. The vector is passed through
an alternating set of three dense and three dropout layers,
before being passed to the sigmoid function for a binary
classification output.

C. Optical Flow

Another solution to the lack of temporal context that
we experimented with was the use of feature extraction
via Gunnar-Farneback optical flow.
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Fig. 9. Optical Flow Example

Gunnar-Farneback optical flow is an algorithm that

estimates the motion between two images. It does this
by approximating the image brightness patterns with
quadratic polynomials and calculating the displacement
fields that align these patterns from one image to the
next[3]. This method involves smoothing the images, ex-
panding them into polynomial terms, and solving a set
of linear equations to find pixel displacements (i.e. how
far a pixel is displaced from one frame to the next). This
allows the algorithm to generate images which capture
the motion between frames, which can then be used as
features for the video classification task. The caveat of
this is that the model is effectively "colorblind" because
the algorithm replaces the original color information of
the frames.
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Fig. 10. Optical Flow Model Architecture

To establish a model incorporating optical flow feature
extraction, we first generated optical flow videos from
each entry in our original dataset provided by Deepstar.
Then we developed a new model better tailored to leverag-
ing optical flow, diverging from the traditional RNN frame-
work. The modifications included adopting a custom CNN
for feature extraction (in place of the Mesonet model), and
utilizing a 1-D convolutional layer instead of an LSTM
to process the sequential features. This adjustment was
predicated on the hypothesis that the 1-D convolutional
layer would more effectively discern short-term patterns,
which are crucial for detecting deepfakes. To continue, we
utilized the Multi-Clip Sampling technique to enhance the
model’s efficacy in identifying these discrepancies.

V. EXPERIMENTAL RESULTS

A. Model Parameters
1) Random Sampler:
a) Frames per Video: 100
2) Multi-Clip Sampler:

a) Frames per Sample: 10
b) Samples per Video: 10

Model Epochs | Batch Size | Optimizer | Learning Rate
Mesonet 10 10 Adam 0.001
Mouthnet 10 10 SGD 0.1

RNN 10 2 Adam 0.001

Optical Flow | 10 16 Adam 0.001
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Fig. 11. Mesonet Accuracy with Multi-Clip Sampling

B. Multi-Clip Sampler

Comparing the performance of the Deepstar models
using the new data generator to the original, we see a
small improvement in the results. The highest test accu-
racy for Mesonet while training improved from 84.22%
to 88.74% using the new sampling method, while the
Mouthnet test accuracy remained at a constant 50%. This
small improvement for Mesonet was most likely caused
by a select few samples in the dataset in which frames
had been "mislabeled" due to the randomness of the
previous sampling method. While it was not enough to
trigger the Mouthnet to start learning properly, the slight
improvement to Mesonet was encouraging.
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Fig. 12.  Mouthnet Accuracy with Multi-Clip Sampling

C. RNN

As seen in Fig. 13, the RNN gradually improved as
training time went on, and outperformed both Mesonet
and Mouthnet in terms of test accuracy while training
with both the old random frame sampler and the new
multi-clip sampler. The highest test accuracy it reached
while training with the old sampling method was 91.67%,

but even that was not as impressive as the highest test
accuracy from training with the new multi-clip sampler.
In the final epoch of training, the RNN with the multi-
clip sampler achieved 100% testing accuracy. In theory,
this should mean that the RNN is capable of correctly
classifying videos it has not seen before 100% of the time.
While this is obviously not true, it is still very encour-
aging, and definitively shows that a temporal dimension
is invaluable when classifying sequential input like video.
The RNN has clearly mastered the Deepstar dataset, and
is ready to be trained and tested on an even larger and
more diverse dataset, to further generalize the model.
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Fig. 13. RNN Accuracy with Random Sampling (top) and Multi-Clip
Sampling (bottom)

D. Optical Flow Model

As seen in Fig. 14, the optical flow model did improve
in accuracy over time, but ultimately resulted in a peak
test accuracy worse than that of the RNN model. The
highest test accuracy achieved during training was 73%.
Additionally, the test accuracy does not correlate closely
with the train accuracy, which most likely indicates that
this model over-fitted to the training data.

The disappointing performance could be the result of
several factors, the first of these being that we did not
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Fig. 14. Optical Flow Model Accuracy with Multi-Clip Sampling

implement a two-stream model[4]. Typically, when using
optical flow in computer vision classification problems,
one would use a two stream model which combines a
temporal model using optical flow and a spatial model
using image classification. However, due to the high com-
putational cost of converting videos to optical flow, we
decided to just test a single stream model first. Because
each video must first be converted to an optical flow
representation, it takes an incredible amount of compute
to preprocess to data. With optimal parallelization on an
A100 GPU, six minute videos could take upwards of 20
minutes to convert into an optical flow representation.

Another factor that may be reducing the optical flow
model’s performance is a result of the Gunnar-Farneback
optical flow algorithm itself. Since it uses a polynomial
model to estimate motion, the algorithm tends to be
worse at interpreting small, discrete motions. This means
that Gunnar-Farneback optical flow has trouble encoding
subtle facial movements, which is crucial for detecting
deepfakes.

In conclusion, although a two-stream optical flow
model might surpass the performance of the RNN, several
considerations dissuade us from pursuing this approach:
the substantial computational resources required and the
potential limitations of optical flow in addressing this spe-
cific problem present significant drawbacks. These factors
collectively suggest that the two-stream model may not
provide a feasible or efficient solution under the current
constraints.

VI. DISCUSSION

A. Results Analysis

The results of our experiment suggest that two of our
proposed solutions (Multi-Clip Sampling and RNN) had
a positive impact on overall task performance. The RNN
outperformed the two Deepstar models, and the new
frame sampling method lead to slight improvements for
both Mesonet and RNN (Mouthnet remained a lost cause).

Optical flow showed intriguing potential, but ultimately
required too much computational overhead to make it
effective. It also seemed to struggle with detecting facial
movements, which makes it not a great fit for this task.

B. Challenges

This project was not without challenges. Getting the
Deepstar models to train or classify at all was a bit of an
arduous process, in no small part due to the lack of any
substantial documentation for the Deepstar Toolkit. It is
possible that our reimplementation of Mouthnet is part
of what caused its terrible performance.

C. Future Work

Since the RNN reached a perfect validation accuracy,
any further testing should be conducted on a larger, more
diverse dataset. The new frame sampling method appears
to be better, but it is still not perfect, as frames from
different parts of the video appear to be next to each other
(as a result of stitching together multiple clips).

VII. GITHUB REPOSITORY
https://github.com/MaxHuber888/DeepSquid
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A. Maximilian Huber

- Set up Mesonet, Mouthnet, and Frame Sampler

. Designed and implemented the Multi-Clip Sampler
« Designed and implemented the RNN

. Drafted Report

B. Kevin Tang

. Organized and oversaw all Mesonet, Mouthnet, and
RNN training

- Generated all Mesonet, Mouthnet, RNN plots/values

« Refactored/Organized repository

C. Brevinh Pham

- Organized and oversaw all Optical Flow Training
- Designed Optical Flow Converter and Network

. Generated all Optical Flow Parts and Values
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